

BAMBOZZI SOLDAS LTDA.

Rua Bambozzi, 522 • Centro • CEP 15990-668 • Matão (SP) • Brasil Fone (16) 3383-3800 • Fax (16) 3382-4228 bambozzi@bambozzi.com.br • www.bambozzi.com.br CNPJ (MF) 03.868.938/0001-16 • Ins. Estadual 441.096.140.110

S.A.B. (Serviço de Atendimento Bambozzi)
0800 773.3818
sab@bambozzi.com.br

(b) bambozzi

Manual de Instruções

Fonte de Energia para Soldagem TDG 275ED

WISE Advanced

Welding Intelligence by Superior Electronics

WISE Advanced é uma inovadora tecnologia baseada no uso do circuito integrado DSP (Digital Signal Processor), responsável pela operação, supervisão e controle efetivo da máquina e de um sistema de Potência totalmente diferenciado. Máquinas desenvolvidas pela Bambozzi para todos os processos de soldagem, eletrodo revestido (SMAW), MIG/MAG (GMAW), arame tubular (FCAW), TIG (GTAW) e arco submerso (SAW), monofásicas e trifásicas, desde 150 até 1500 Amperes.

Topologia do Circuito de Potência Trifásico

É uma topologia totalmente inovadora, sem precedentes em máquinas de soldar. Normalmente os circuitos de potência em máquinas de soldar são baseados em uma ponte retificadora trifásica com diodos (eletromecânicas) ou em tiristores (eletrônicas). Em quaisquer dos casos, há sempre dois semicondutores em série com a carga. Nos circuitos WISE Advanced existe um único semicondutor (tiristor) em série com a carga. Este fator só já representa próximo da metade da potência dissipada na ponte.

Além disso, na WISE Advanced cada tiristor conduz somente metade da corrente de pico da carga. Isto implica num Vf (queda de tensão em condução direta do tiristor) menor, ocasionando uma potência dissipada ainda mais baixa.

Por trabalhar com metade da corrente, o stress sobre os tiristores é muito mais baixo, repercutindo no aumento da vida útil do componente. Esta vantagem é refletida também nas bobinas do secundário do transformador, fazendo com que a corrente RMS seja ao redor de 38% mais baixa. A topologia nossa resulta em mais baixos harmônicos de corrente injetados na rede, oferecendo Fator de Potência mais alto, algo desejável, pois as companhias de energia geralmente cobram tarifas mais baixas quando este número é mais alto.

Resumindo: maior economia e durabilidade com índice mínimo de defeitos.

Placa digital: menor custo, major simplicidade com major robustez.

Nossa tecnologia substitui na placa eletrônica, componentes analógicos por um sistema digital via software, onde este software realiza todas as funções da máquina.

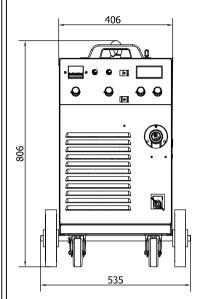
O chip (DSP) possui, além do processador, várias entradas para conversor A/D, memória de programa, memória de dados, saídas PWM, todo em um único *chip*, com instruções diretas em funções matemáticas muito úteis em cálculos para controlar a máquina, o que não existe em outros processadores.

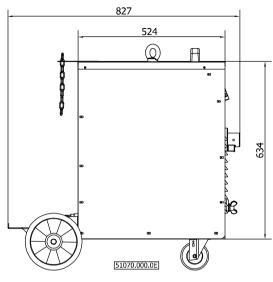
Isto se traduz em uma placa única e extremamente compacta, fabricada com tecnologia automatizada SMD, com microprocessador central onde vai carregado o software, que tem up-grade gratuito para o cliente. Esta placa, terminado o período de garantia de 2 anos, tem custo de reposição substancialmente mais baixo do mercado.

A confiabilidade da placa é incomparável, por seu uso reduzido de componentes, já que tudo é operado via software, com reposição simples e rápida.

A placa vai em um receptáculo próprio, uma caixa fechada e em separado, isolado dos contaminantes como pós, vapores, etc, garantindo total vida útil e robustez extrema.

Malha fechada: controle total das funções.


A tecnologia é baseada no conceito de malha fechada, onde o processador está todo o tempo monitorando todos os parâmetros de entrada e saída, processando e os corrigindo de forma ativa. O processador e seu software controlam as principais funções, como geração de pulso de disparo, medição de sinais de corrente e voltagem e controle em malha fechada (PID-(Proporcional, Integral e Diferencial).


TDG 275ED - WISE ADVANCED

DIMENSÕES GERAIS

Abertura do arco mais fácil.

O mergulho da voltagem desde a voltagem em vazio até a voltagem de soldagem é controlado pelo microprocessador, de tal forma que este proporciona um mergulho de voltagem mais suave, mantendo o arco durante o processo de abertura do mesmo. Isto não ocorre nas máquinas da concorrência, onde o mergulho é mais súbito (abrupto). Nossa tecnologia provê uma abertura de arco extremamente estável e sem colar o eletrodo na peca.

Ampéres e Volts perfeitos

A corrente (A) nas máquinas de eletrodo (SMAW) e TIG (GTAW) e a voltagem (V) nas máquinas de arame (GMAW/ FCAW), como variáveis controladas, são fixas e independentes de variações de rede ou de temperatura, o que não ocorre em máquinas de soldar da concorrência. Isso significa que se o operador ajustar em 200A no display, a solda seguirá em 200A sempre, mesmo que a máquina aqueca ou a rede varie.

Além disso, durante o processo de soldar um único eletrodo a resistência elétrica do mesmo diminui na medida em que este eletrodo vai ficando mais curto por seu consumo. Nas máquinas convencionais, isto repercute em um aumento da corrente durante a solda deste eletrodo. Na nossa tecnologia WISE Advanced isso não ocorre, já que a corrente é sempre constante, desde o inicio do arco até que se consuma o eletrodo completamente.

Isso é precisão superior não encontrada em nenhuma outra máquina de solda.

Regulação contra variações de rede.

Nossa revolucionária tecnologia possui regulação contra caídas e subidas de voltagem de rede, ao redor de 15%, acima ou abaixo. A soldagem e seu cordão se mantém perfeitos, independente da variação de rede. Ademais, as máquinas de maior capacidade contam com capacitores de polipropileno na entrada, reforçando esta proteção e atuando como um filtro de ruídos da rede, além de reduzir ainda mais os harmônicos e subir o Fator de Potência.

Faixa única para todas as Amperagens.

Nossa arquitetura permite que a máquina tenha uma faixa de regulagem única e mais ampla em relação às máquinas eletromecânicas, sem necessidade de troca entre faixa alta e baixa. Além disso, as amperagens mínimas são baixas o suficiente para permitir que as máquinas para eletrodo sejam usadas também para TIG em chapas com uma espessura mínima.

Soldagem perfeita e menor consumo de energia

Toda esta tecnologia resulta numa soldagem mais suave, macia e de fácil abertura de arco, com extrema economia de energia, chegando até 30%, com máguinas mais compactas, leves e confortáveis. A qualidade da soldagem final é comparável com as máquinas inversoras.

IHM - Interface Homem Máquina

O sistema IHM é parte fundamental da WISE Advanced.

O ajuste da máquina se faz por meio de um encoder, com um knob giratório sem fim. Os ampéres de saída, ou volts para máquinas MIG, resultam reais e são apresentados em um display eletrônico, independente da máquina estar em soldagem ou em vazio, com precisão total e medição por meio de Shunt. A memória guarda a corrente utilizada, mesmo guando a máguina é desligada.

WISE Advanced: robustez, confiabilidade, alta potência, força, simplicidade, baixo custo de aquisição e manutenção, com alto índice de componentes padrão, requisitos superiores não encontrados nas inversoras. Estabilidade, qualidade, facilidade de abertura de arco, precisão, economia de energia, tamanho e peso reduzidos e alta tecnologia em níveis não existentes nas eletromecânicas.

WISE Advacend: precisão, economia, robustez e potência.

TDG 275ED - WISE ADVANCED

ÍNDICE

01. Introdução

02. Especificações Gerais

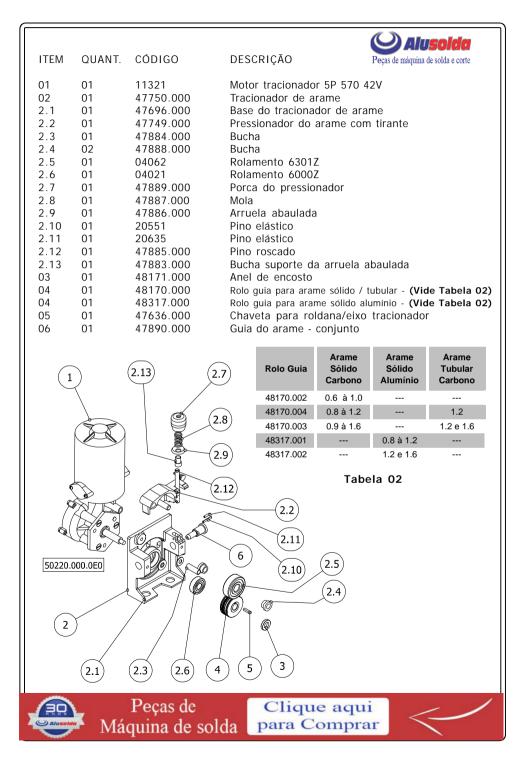
PARTE I - Operação

03. Instalação

04. Painel de Controle

05. Precauções de Segurança

06. Operação


PARTE II - Manutenção

07. Inspeção e Limpeza

08. Guia para Conserto

09. Lista de Peças

TDG 275ED - WISE ADVANCED Página 01

ITEM	QUANT.	CÓDIGO	DESCRIÇÃO	Alusoida Peças de máquina de solda e corte)9
49	02	30056	Fecho SOUTH CO	S40 A34052512	
50	01	45967.000	Base completa		
51	01	28133	Euroconector com	flange	
52	02	16606	Roda		
53	02	16605	Rodizio GLE 312 N	PP	
54	01	00848.000	Porca borboleta		
55	01	11680	PCI - ST/01-REV0	1	
56	01	51527.001	Eixo		
57	01	27111	Borne		
58	01	51493.000	Isolante do borne		
59	01	19795	Corrente de ELO	galvanizada	
60	01	42675.000	Apoio do tubo		
61	01	11511	Transformador 13		
62	01	51486.000	Ponte retificadora		
63	01	50520.000	Suporte do regula		
64	01	19316	Cabo de transpor		
65	01	06857.000	Tampa da troca de		
66	03	50508.000	Bobina primária /	secundária	
67	01	51313.000	Bleeder		
68	01	50248.000	Suporte da ponte		
69	01	49172.000	Cabo de rede		
70	05	19976	Arruela isolante fe		
71	01	48422.000	Suporet do ventila	ador	
72	01	49567.000	Tampa móvel		
73	01	19102	Caixa plástica	,	
74	01	51744.000	Shunt 250A 60 mV		
75	01	11626	Resistor 1K/5W		

TDG 275ED - WISE ADVANCED Página 13

01. Introdução

Este manual contém as informações necessárias para operação e manutenção da Fonte de Energia para Soldagem TDG 275ED - WISE ADVANCED.

Os melhores resultados serão obtidos **SOMENTE** se o pessoal de operação e manutenção deste equipamento tiver acesso a este manual e ficar familiarizado com o mesmo.

No painel dianteiro da máquina encontra-se uma etiqueta com o número e a série do equipamento. Ao pedir peças de reposição cite: <u>o número, a série, a quantidade, o</u> código e a descrição da peça.

Número: PS51070.000.3509

02. Especificações Gerais

Fonte de Energia para Soldagem, é destinada aos processos: MIG (ALUMÍNIO, COBRE), MAG (AÇOS CARBONO) - ARAMES TUBULARES COM PROTEÇÃO GASOSA OU AUTO-PROTEGIDO

- Calibrador e Indicador Digital da Tensão de Solda;
- Calibrador e Indicador Digital da Velocidade do Arame;
- Medidor Digital da corrente de solda com memorização;
- Controle de ajuste do Temporizador;
- Controle de ajuste do Tempo de Retardo (Stick-Out)
- Controle 2T / 4T;
- Controle de Avanço Manual do Arame;

ENTRADA		SAIDA	
TENSÃO (VCA)	220 / 380 / 440	TENSÃO EM VAZIO (V)	10 A 42
CORRENTE MÁXIMA (A)	24 / 14 / 12	FAIXA DE REGULAGEM (A)	30 A 250
POT. AP. MÁXIMA @ 250 A / 27	V (kVA) 8	CICLO DE TRABALHO (250 A / 27 V)	50 %
FREQUÊNCIA (Hz)	50/60	PESO (Kg)	93
Nº DE FASES	3		

As dimensões gerais estão na página 15.

PARTE I - Operação

03. Instalação

ISOLAÇÃO (ºC)

3.1 Local de instalação

A Máquina de Solda deve ser instalada em local bem ventilado.

CLASSE B-130

Não instale o equipamento em locais onde existe limalha e poeira em suspensão, atmosferas corrosivas e umidade em excesso.

Nunca deixe a máquina sofrer a ação das intempéries.

OBS: Limalha, poeira, etc, sobre partes internas do equipamento, aumenta o consumo de energia elétrica, reduz o rendimento e a vida útil da máquina.

TDG 275ED - WISE ADVANCED Página 02

3.2 Placa de mudança de voltagem - (Troca de Voltagem) Pecas de máquina de solda e corte

A máquina já vem ligada na voltagem de rede de acordo com o pedido. No caso de troca de voltagem, proceder da seguinte maneira:

- Retire a tampa do painel de troca de voltagem localizada na lateral esquerda;
- Faça as conexões para a voltagem desejada de acordo com o desenho gravado na parte traseira da tampa de troca de voltagem, veia figura abaixo:
- Não deixe ligações frouxas que possam provocar mau contato;

250A - 7 V	380V - Y Y	440V - Δ
9 T 6 3 5 R 0 1 8 7 4 0 s	9 T 6 3 5 R 0 1 2 8 7 4 1 s	

48960.001.0

ESTEJA CERTO DE QUE A MÁQUINA ESTÁ LIGADA NA MESMA TENSÃO DA REDE

Os cabos de entrada da máquina deverão ser ligados à rede através de chave com fusíveis adequados como indica a tabela 01.

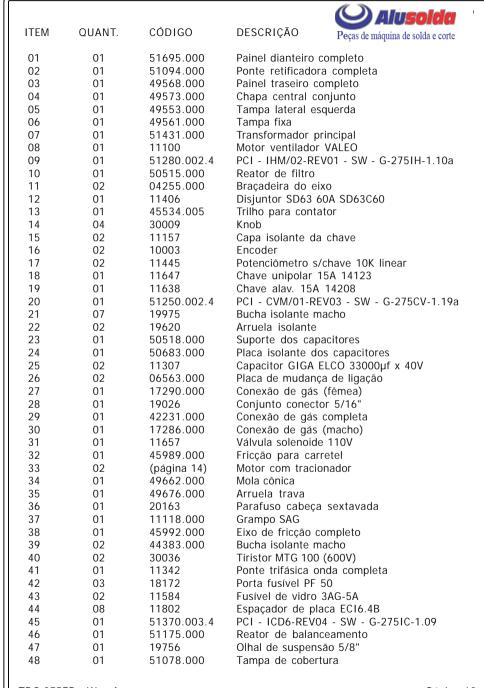
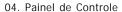

TENSÃO DE REDE	CORRENTE DE REDE	FIO DE EN	NTRADA AO AR LIVRE	FUSÍVEL	FIO TERRA
220 V	24 A	06 mm ²	06 mm ²	30 A	06 mm ²
380 V	14 A	04 mm ²	04 mm ²	20 A	04 mm ²
440 V	12 A	04 mm ²	04 mm ²	20 A	04 mm ²

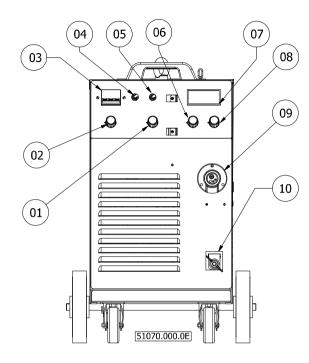
Tabela 01

Somente ligue a máquina após a conexão de um fio terra em sua carcaça e no sistema de aterramento adequado, dessa forma o operador não corre risco de choque por eventual falha de isolação ou equipamento a ela conectado.

Para tal siga a tabela 01 de informações técnicas.

TDG 275ED - Wise Advanced Página 03


09. Lista de Peças


Peças de máquina de solda e corte

Verifique o número de identificação da peça no desenho, procure na lista da (s) página (s) posterior (es), a descrição, a quantidade e o código da peca.

Item	Descrição
------	-----------

01. Stick-Out

Temporizador 02.

03. Disjuntor AC principal - Liga/Desliga

04. 2T / 4T

05. Avanço manual do arame

06. Ajuste de tensão

07. Display

08. Velocidade do arame

09. Euro conector

10. Borne negativo

Clique aqui Máquina de solda para Comprar

Peças de Máquina de solda para Comprar

Clique aqui

05. Precauções de Segurança

O operador deve usar máscara para equipamento de soldagem a arco com lentes apropriadas para tal.

OBS: Não use óculos de soldagem oxi-acetilênica, pois estes não dão a proteção necessária aos olhos.

No caso da vista ser atingida por luminosidade do arco esta poderá ficar irritada. Em caso de umidade excessiva, o operador pode perceber choque elétrico em qualquer equipamento de soldagem, portanto o operador deve estar protegido com sapatos, luvas e roupas secas, sempre que estiver soldando.

06. Operação

- A placa CVM/01 (interna à máquina), controla a velocidade do arame e a placa IHM/02 (painel da máquina) fornece o ajuste para a Velocidade do Arame e para a Tensão de fonte retificadora.

O ajuste da tensão de solda é feita pelo Encoder identificado como Tensão e esta tensão (V) é visualizada na parte inferior do display.

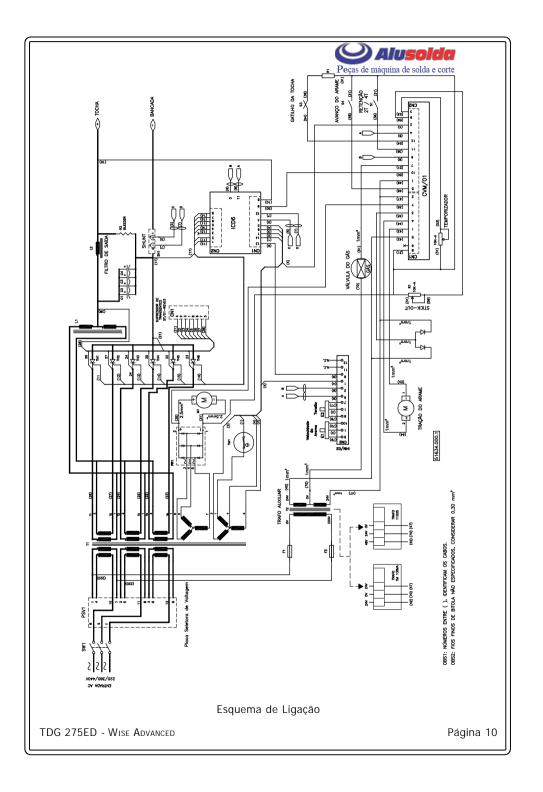
A parte superior do display tem duas funções.

Quando se está ajustando a velocidade do arame, ela mostra a velocidade do arame em m/min e quando se está soldando ela mostra a corrente de solda. Esta corrente de solda fica memorizada ao se encerrar a solda.

Se o operador quiser visualizar a velocidade do arame, basta ele dar 1 click no Encoder de Velocidade do Arame e o display passará a mostrar a velocidade do arame.

A chave Avanço do Arame tem a função de avançar o arame com a velocidade ajustada, mas sem ligar o gás e sem ligar a máquina.

A chave 2T/4T tem a função de:


- * Em 2T o sistema opera do modo manual, ou seja, com o gatilho pressionado o sistema é ativado e com o gatilho solto, o sistema é desativado
- * Em 4T, um toque no gatilho ativa o sistema, ou seja, não é preciso segurar o gatilho pressionado para operar. Para desligar, basta um novo toque (aperta e solta) no gatilho.
- O potenciômetro Temp (Temporizador) ajusta o tempo de solda. Dentro da faixa 0 (zero), esta função fica desabilitada, ou seja a solda é ininterrupta.

No início da faixa 1 (um) a função passa a agir com tempo minímo. Então após acionado o gatilho, a solda é iniciada, e decorrido este tempo, o sistema é desligado automaticamente. Conforme se gira o potenciômetro no sentido horário, este tempo aumenta proporcionalmente, chegando no máximo aproximadamente 30 seq.

Esta função é usada para fazer comprimentos de cordões de solda exatamente iguais.

- O potenciômetro Stick-Out ajusta o comprimento do arame que sobra ao encerramento de uma solda. É conhecido como Tempo de Retardo.

TDG 275ED - WISE ADVANCED Página 05

Os fios de Gate dos tiristores devem estar desligados. Então ligar a máquina e colocar o potenciômetro, ou encoder para o ajuste máximo. Estamos partindo do princípio que a placa está OK e suas conexões também.

Nesta situação deve-se medir 0 (zero) na saída da máquina.

Com a máquina ligada e sem carga, você experimentará um determinado fio de Gate em todos os Gates dos tiristores. Tomar cuidado para que os outros fios soltos não se encostem a nada vivo.

Você irá obter 6 leituras na saída da máquina. Eleger a segunda maior leitura e marcar qual fio em qual tiristor é que deu esta leitura. Aqui merece um pouco mais de atenção. Observe que existem 2 leituras maiores que a eleita, que podem dar iguais ou podem dar um pouco diferentes entre si. Por exemplo: Uma pode dar 17,6V e a outra pode dar 17,9V. A correta não é nenhuma das duas. Seria uma terceira que está na faixa de 1,5V abaixo destas duas. Pedimos para selecionar a segunda maior leitura porque as duas primeiras, teoricamente dariam iguais, mas na prática podem dar ligeiramente diferentes. Deixar este fio desligado do tiristor e dar seqüência para o segundo fio. Repetir o procedimento até você encontrar a segunda maior leitura que deve bater com aquela primeira já determinada. Novamente marcar o fio com o tiristor. E assim por diante até o sexto tiristor.

Você deve obter 6 leituras iguais.

Observe que sempre $\acute{\text{e}}$ feito um de cada vez, ou seja, os outro 5 permanecem desligados.

Feito isto você pode ligar todos os fios de Gate e então medir a tensão de saída. No caso de máquinas TDGs, não esquecer de ligar de volta o cabo dos capacitores eletrolíticos.

Verificar no manual da máquina a tensão em vazio que deve dar e comparar com o valor obtido.

Obs. No caso das máquinas TDGs, a tensão medida de saída (em vazio) não é igual a tensão lida no medidor da máquina, porque a tensão indicada no medidor é a tensão de solda. Então, é necessário colocar uma pequena carga para comprovar que a tensão medida na saída está igual a tensão indicada no medidor.

Para o caso das máquinas TRR 2630E e PÍCCOLA 430E, a procura do sincronismo é similar, só que observar que agora existem 2 fios ligados ao tiristor, um de Gate e o outro de Catodo. Portanto as mudanças devem ser sempre aos pares. Não pode ligar o fio do Gate de um tiristor e o fio de seu catodo ligar em outro tiristor. Isto vai provocar a queima do tiristor.

Observe no esquema elétrico das máquinas que os fios de Gate e Catodo dos tiristores saem do conector da placa P400E na seguinte seqüência:

- 1CN2 Catodo Tiristor A:
- 2CN2 Gate Tiristor A:
- 3CN2 Catodo Tiristor B:
- 4CN2 Gate Tiristor B;
- e assim por diante;

Nestas máquinas, TRR2630E e PÍCCOLA 430E, a ponte retificadora de tiristores deve ser substituída por uma ponte retificadora com tiristores de rosca. A Bambozzi disponibiliza esta ponte já montada no dissipador, com a placa de supressor e seu chicote e a ponte do ventilador.

Consultar nosso departamento de Assistência Técnica.

TDG 275ED - WISE ADVANCED Página 09

Na posição da faixa 0 (zero) a função é desabilitada, ou seja sem Tempo de Retardo.

No início da faixa 1 (um) a função é habilitada e começa com um tempo mínimo. Conforme se gira o potenciômetro no sentido horário o Tempo de Retardo aumenta.

PARTE II - Manutenção

07. Inspeção e Limpeza

Limpeza

Quando a máquina é usada em regime ininterrupto, é necessário conservá-la limpa, seca e bem ventilada. Para tal, certifique-se que a máquina está desligada a rede e limpe com um pincel seco ou ar comprimido o pó depositado internamente, principalmente nas bobinas, retificadores e pás do ventilador.

As conexões devem ser inspecionadas e apertadas periodicamente para evitar problemas e subsequentes consertos.

NOTA: Nunca deixe a máquina funcionar sem quaisquer das tampas, isso pode ocasionar sérios problemas com a máquina.

08. Guia para Conserto

Instruções para Pesquisa de Defeitos

O técnico responsável para o conserto da máquina, deve ter em mãos o seu esquema. Caso não o tenha, deverá solicitá-lo ao nosso Depto. de Assistência Técnica.

1) Máquina não liga ou não regula.

- A primeira providência é verificar se a máquina está sendo alimentada pela rede de acordo com a configuração da Placa de Mudança de Voltagem. A tensão da rede deve ser medida nesta placa e não no quadro de alimentação. Pode haver algum problema no caminho ou falha no disjuntor de entrada. Também é importante medir a tensão neste ponto com a máquina em carga, ou seja, em procedimento de solda, porque pode ser que em vazio o valor está OK, mas quando carrega, a tensão pode descer a níveis inferiores ao mínimo. (15% do valor nominal)

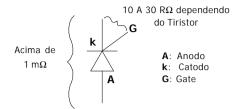
- O próximo passo é verificar a função do ajuste da máquina.

a) Para as máquinas com potenciômetro, deve-se verificar inicialmente, se a tensão do potenciômetro está alimentando a placa de controle. Pelo esquema elétrico você vai identificar onde a informação entra na placa. Então, se deve medir neste ponto (vamos chamar este ponto de Set-Point), de preferência já dentro da placa, para identificar possíveis problemas de conexão. A tensão DC do Set-Point deve variar de próximo de 0 V (zero) até aproximadamente 2,3 V quando se varia o potenciômetro do mínimo ao máximo. Esta tensão deve ser medida em relação ao terra da fonte da placa, que é o pino 4 do conector CN1, ou, um ponto mais fácil para se tocar com a ponta do multímetro é a carcaça do regulador de tensão RT1 dentro da placa.

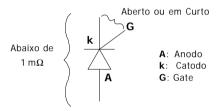
Se isto não estiver ocorrendo então pode ser defeito do potenciômetro, ou alguma interrupção no circuito do potenciômetro, solda ou conector, ou os fios do potenciômetro estão ligados errados, ou curto no conector da Remota, ou ainda defeito na placa, no circuito que fecha com o potenciômetro.

Se esta etapa estiver OK , então a próxima possibilidade é que o defeito seja da placa.

- b) Para as máquinas com Encoder, que possui o display digital, este tipo de problema mostrará a escrita **ERR** no display. Neste caso ou existe um problema de conexão entre a placa do display e a placa de controle, ou o defeito é da placa de controle.
- Em estando tudo OK até aqui, o próximo passo é verificar a condição dos tiristores e o sincronismo de disparo.
- a) Inicialmente a verificação dos tiristores é visual, para observar se não existe nada queimado.


Depois, a verificação é por intermédio de um multímetro na escala de Ohms. Desligar os cabos do Catodo e os fios do Gate dos tiristores. Proceder à medição Anodo-Catodo. O resultado deve ser acima de 1 Mohms. Na seqüência medir Gate-Catodo. O resultado deve estar entre 10 e 30 Ohms.

TDG 275ED - WISE ADVANCED Página 07



Tiristores fora destes padrões devem ser descartados.

Tiristor Bom:

Tiristor Ruim:

b) Verificação do Sincronismo de disparo dos tiristores.

No caso de máquinas TDGs, deve-se soltar o cabo de um dos lados dos capacitores eletrolíticos.

Em primeiro lugar é importante entender a ligação do secundário do transformador. Muitas vezes o transformador foi trocado, ou alguma bobina foi trocada e, portanto a sua ligação deve estar correta.

Então, de acordo com o Diagrama Elétrico da máquina, observe que cada perna do transformador tem duas bobinas. No esquema está identificado o início e o fim das bobinas. O início de uma determinada bobina irá até o tiristor. O seu fim irá até um dos lados do choque de balanceamento. Este choque é aquele que tem duas entradas separadas e duas saídas em curto.

A outra bobina que está concatenada com esta inverte a ligação, ou seja, o seu fim irá em outro tiristor e o seu início irá do outro lado do choque.

Nas outras pernas do transformador você deve repetir o procedimento.

- O próximo passo é medir as tensões AC (6 medições) do catodo de cada tiristor para o centro do choque de balanceamento. Todas devem ser do mesmo valor.
- A última parte é o acerto do sincronismo. Para isto, colocar o multímetro nos bornes de saída, na escala de Vdc.